Tilted Forum Project Discussion Community  

Go Back   Tilted Forum Project Discussion Community > The Academy > Tilted Knowledge and How-To

Notices

 
 
LinkBack Thread Tools
Old 02-22-2005, 02:24 PM   #1 (permalink)
Addict
 
universal set paradox

"Try to take the power set of the universal set. You will find that the universal set must be a member of itself and not a member of itself

Russell does use the Russell set and hierarchy to solve this problem."

I understand the contradiction of russell set, but not of the universal set. Why must the universal set not be a member of itself. How does russell use the russell set to solve the problem. I understnd the theory of types, the hierarchy, but not why russell's set is needed to solve the problem. I also understand the contradiction that the power set must be bigger and the same size as universal set but not the contradiction noted above. Thanks.
noahfor is offline  
Old 02-22-2005, 02:27 PM   #2 (permalink)
Mad Philosopher
 
asaris's Avatar
 
Location: Washington, DC
It's been a while since I've studied set theory, but in a nutshell, every set has to have a domain, so there is no such thing as the universal set.
__________________
"Die Deutschen meinen, daß die Kraft sich in Härte und Grausamkeit offenbaren müsse, sie unterwerfen sich dann gerne und mit Bewunderung:[...]. Daß es Kraft giebt in der Milde und Stille, das glauben sie nicht leicht."

"The Germans believe that power must reveal itself in hardness and cruelty and then submit themselves gladly and with admiration[...]. They do not believe readily that there is power in meekness and calm."

-- Friedrich Nietzsche
asaris is offline  
Old 02-23-2005, 12:08 PM   #3 (permalink)
Addict
 
What if there were a set whose members are all the members of the power set of this set, so x is a member of S if x is a member of P(S). Doesn't this violate Cantor's theorem, and also is not able to be resolved by Russell's hierarchy?

I came up with that myself.
noahfor is offline  
Old 02-23-2005, 12:53 PM   #4 (permalink)
Mad Philosopher
 
asaris's Avatar
 
Location: Washington, DC
Do you mean x is a member of S if and only if x is a member of P(S)? I think you could use Cantor's theorem to show that such a set is impossible -- take f(x) -> x. Since this function is one-to-one (forgive me if I'm forgetting terminology here), S = P(S). But this is impossible, so your definition of a set defines a different set.

I think that's just an impossible set, and so a bad definition of a set. But I'd really feel more confident if someone who's had more set theory could confirm this. Maybe if I have time today or tonight, I'll try to refresh my memory a bit better.
__________________
"Die Deutschen meinen, daß die Kraft sich in Härte und Grausamkeit offenbaren müsse, sie unterwerfen sich dann gerne und mit Bewunderung:[...]. Daß es Kraft giebt in der Milde und Stille, das glauben sie nicht leicht."

"The Germans believe that power must reveal itself in hardness and cruelty and then submit themselves gladly and with admiration[...]. They do not believe readily that there is power in meekness and calm."

-- Friedrich Nietzsche
asaris is offline  
 

Tags
paradox, set, universal


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT -8. The time now is 02:12 AM.

Tilted Forum Project

Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2025, vBulletin Solutions, Inc.
Search Engine Optimization by vBSEO 3.6.0 PL2
© 2002-2012 Tilted Forum Project

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360