Tilted Cat Head
Administrator
Location: Manhattan, NY
|
No, I'm not dismissing your question. It is just impossible to know what the statistics really mean, what variables where considered, what variables not considered, what variables showed up and unaccounted for?
So you find out what the answer is, it still doesn't change the fact that you have sex, your partner can get pregnant, and you want to have sex with the least amount of probability of pregnancy. But no matter what statistic you believe, it may not even apply to you, meaning if it is 91% (whatever that means) you still could easily be the 9%. In fact, I'd go as far to say, you have a 50% chance of being in the 91% or the 9%.
Quote:
Conceptual overview
In applying statistics to a scientific, industrial, or societal problem, one begins with a process or population to be studied. This might be a population of people in a country, of crystal grains in a rock, or of goods manufactured by a particular factory during a given period. It may instead be a process observed at various times; data collected about this kind of "population" constitute what is called a time series.
For practical reasons, rather than compiling data about an entire population, one usually instead studies a chosen subset of the population, called a sample. Data are collected about the sample in an observational or experimental setting. The data are then subjected to statistical analysis, which serves two related purposes: description and inference.
Descriptive statistics can be used to summarize the data, either numerically or graphically, to describe the sample. Basic examples of numerical descriptors include the mean and standard deviation. Graphical summarizations include various kinds of charts and graphs.
Inferential statistics is used to model patterns in the data, accounting for randomness and drawing inferences about the larger population. These inferences may take the form of answers to yes/no questions (hypothesis testing), estimates of numerical characteristics (estimation), forecasting of future observations, descriptions of association (correlation), or modeling of relationships (regression). Other modeling techniques include ANOVA, time series, and data mining.
The concept of correlation is particularly noteworthy. Statistical analysis of a data set may reveal that two variables (that is, two properties of the population under consideration) tend to vary together, as if they are connected. For example, a study of annual income and age of death among people might find that poor people tend to have shorter lives than affluent people. The two variables are said to be correlated. However, one cannot immediately infer the existence of a causal relationship between the two variables; see correlation does not imply causation. The correlated phenomena could be caused by a third, previously unconsidered phenomenon, called a lurking variable.
If the sample is representative of the population, then inferences and conclusions made from the sample can be extended to the population as a whole. A major problem lies in determining the extent to which the chosen sample is representative. Statistics offers methods to estimate and correct for randomness in the sample and in the data collection procedure, as well as methods for designing robust experiments in the first place; see experimental design.
The fundamental mathematical concept employed in understanding such randomness is probability. Mathematical statistics (also called statistical theory) is the branch of applied mathematics that uses probability theory and analysis to examine the theoretical basis of statistics.
The use of any statistical method is valid only when the system or population under consideration satisfies the basic mathematical assumptions of the method. Misuse of statistics can produce subtle but serious errors in description and interpretation — subtle in that even experienced professionals sometimes make such errors, and serious in that they may affect social policy, medical practice and the reliability of structures such as bridges and nuclear power plants.
Even when statistics is correctly applied, the results can be difficult to interpret for a non-expert. For example, the statistical significance of a trend in the data — which measures the extent to which the trend could be caused by random variation in the sample — may not agree with one's intuitive sense of its significance. The set of basic statistical skills (and skepticism) needed by people to deal with information in their everyday lives is referred to as statistical literacy.
|
__________________
I don't care if you are black, white, purple, green, Chinese, Japanese, Korean, hippie, cop, bum, admin, user, English, Irish, French, Catholic, Protestant, Jewish, Buddhist, Muslim, indian, cowboy, tall, short, fat, skinny, emo, punk, mod, rocker, straight, gay, lesbian, jock, nerd, geek, Democrat, Republican, Libertarian, Independent, driver, pedestrian, or bicyclist, either you're an asshole or you're not.
|