View Single Post
Old 05-03-2005, 06:57 AM   #24 (permalink)
ObieX
Pickles
 
ObieX's Avatar
 
Location: Shirt and Pants (NJ)
Autonomous NanoTechnology Swarms

Ok... this one is just badass lol. Brings up visions of the liquid metal terminator.

http://www.nasa.gov/vision/universe/...rers/ants.html

Quote:
FEATURE
Shape-Shifting Robot Nanotech Swarms on Mars

03.29.05

NASA Astronaut Journal, Mars, 2034:

The latest spacecraft sent to us is more a living thing than a robot. Shortly after launch from Earth, the tiny capsule blossomed into a sail and rode the solar wind to Mars. On the way, a meteoroid punched a hole in the sail, but surrounding material flowed in and closed the tear. Upon arrival, the spacecraft shrunk more than 100 times its volume to return to the safety of its capsule. After the capsule took the heat from entry into the Martian atmosphere, the thing emerged again, forming a parasail to float gently to the Martian surface, covering the rocks like a blanket. Now it moves like a giant amoeba over the rugged terrain, flowing around large rocks and over small ones, and growing stalks that carry instruments. Yesterday, it found evidence of an ancient sea. It grew an antenna and transmitted the observations to an orbiting spacecraft, which relayed the data to our Martian base. In a few weeks, we'll mount an expedition for a closer look at the area…

Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., took the first step toward this scenario with the successful test of a shape-shifting robotic pyramid. As the engineers watched like anxious new parents, the robot pyramid traveled across the floor of a lab at NASA Goddard. Robots of this type will eventually be miniaturized and joined together to form "autonomous nanotechnology swarms" (ANTS) that alter their shape to flow over rocky terrain or to create useful structures like communications antennae and solar sails.


"This prototype is the first step toward developing a revolutionary type of robot spacecraft with major advantages over current designs," said Dr. Steven Curtis, Principal Investigator for the ANTS project, a collaboration between Goddard and NASA's Langley Research Center, Hampton, Va. Using advanced animation tools, Langley is developing rover operational scenarios for the ANTS project.

The robot is called "TETwalker" for tetrahedral walker, because it resembles a tetrahedron (a pyramid with 3 sides and a base). In the prototype, electric motors are located at the corners of the pyramid, which are called nodes. The nodes are connected to struts which form the sides of the pyramid. The struts telescope like the legs of a camera tripod, and the motors in the nodes are used to expand or retract the struts. This allows the pyramid to move: changing the length of its sides alters the pyramid's center of gravity, causing it to topple over. The nodes also pivot, giving the robot great flexibility.

In January, 2005, the prototype was shipped to McMurdo station in Antarctica to test it under harsh conditions more like those on Mars. The test indicated some modifications will increase its performance; for example, placing the motors in the middle of the struts rather than at the nodes will simplify the design of the nodes and increase their reliability.

The team anticipates TETwalkers can be made much smaller by replacing their motors with Micro- and Nano-Electro-Mechanical Systems. Replacement of the struts with metal tape or carbon nanotubes will not only reduce the size of the robots, it will also greatly increase the number that can be packed into a rocket because tape and nanotube struts are fully retractable, allowing the pyramid to shrink to the point where all its nodes touch.

These miniature TETwalkers, when joined together in "swarms," will have great advantages over current systems. The swarm has abundant flexibility so it can change its shape to accomplish highly diverse goals. For example, while traveling through a planet's atmosphere, the swarm might flatten itself to form an aerodynamic shield. Upon landing, it can shift its shape to form a snake-like swarm and slither away over difficult terrain. If it finds something interesting, it can grow an antenna and transmit data to Earth. Highly-collapsible material can also be strung between nodes for temperature control or to create a deployable solar sail.

Additionally, the nodes will be designed to disconnect and reconnect to different struts. If a meteoroid or rough landing punches a hole in the swarm, the system can heal itself by rejoining undamaged nodes. "Spacecraft are so expensive because failure in a single component can cripple the entire spacecraft, so extensive testing and redundant systems are employed to reduce the chance of catastrophic failure. We wouldn't live long if our bodies worked like this. Instead, when we get hurt, new cells replace the damaged ones. In a similar way, undamaged units in a swarm will join together, allowing it to tolerate extensive damage and still carry out its mission," said Curtis.

The pyramid shape is also fundamentally strong and stable. "If current robotic rovers topple over on a distant planet, they are doomed -- there is no way to send someone to get them back on their wheels again. However, TETwalkers move by toppling over. It's a very reliable way to get around," said Curtis.

The team is conducting extensive research in artificial intelligence to get the robots to move, navigate, and work together in swarms automatically. The research includes development of a new interface that integrates high-level decision making with lower level functions typically handled intuitively by living organisms, like walking and swarm behavior. All systems are being designed to adapt and evolve in response to the environment.
There's also a web site exclusively for this method of exploration at: http://ants.gsfc.nasa.gov/

The web page inclused movies that help give a better idea of how they move and what they'll be able to do:

http://ants.gsfc.nasa.gov/features/e...20tetsteps.mov
http://ants.gsfc.nasa.gov/features/1tet_lan.mov
http://ants.gsfc.nasa.gov/features/4tet_lan.mov
http://ants.gsfc.nasa.gov/features/1...mall%20lan.mov
http://ants.gsfc.nasa.gov/features/LARA_lan.mov
http://ants.gsfc.nasa.gov/features/stowing%20sail.mov
http://ants.gsfc.nasa.gov/features/dancing%20sail.mov

There's a few more moives and lots more detail on that site as well.
__________________
We Must Dissent.

Last edited by ObieX; 05-03-2005 at 07:06 AM..
ObieX is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360