Tilted Forum Project Discussion Community  

Go Back   Tilted Forum Project Discussion Community > The Academy > Tilted Knowledge and How-To


 
 
LinkBack Thread Tools
Old 02-05-2005, 01:24 PM   #1 (permalink)
Junkie
 
zero2's Avatar
 
Discrete Math

I having a little trouble understanding, how to calculate a problem. I first checked some of the examples in the book, and I couldn't figure out what or how they produce certain parts of the answers, then I went on the web to see if there was an easier or more clearer way of doing this problem, but I'm still having some problems.

Now on to the problem, well actually the example in the book:

Compute GCD (Greatest Common Divisor) d, Let a = 190 and b = 34. Write d = sa + tb

Step 1: Find GCD using Euclidean Algorithm ( I have no problem doing this part, for instance, 190 = 5.34 + 20, 5.34 is something called quotient or 5 x 34 and 20 is calculated by subtracting 190 - 5 x 34)

divide 190 by 34: 190 = 5.34 + 20
divide 34 by 20: 34 = 1.20 + 14
divide 20 by 14: 20 = 1.14 + 6
divide 14 by 6: 14 = 2.6 + 2 <---GCD
divide 6 by 2: 6 = 3.2 + 0

(Once we get a 0 remainder, we stop, and GCD is the remainder above which is 2)

GCD(190, 34) = 2

Step 2: (This is the step where Im stuck at, it doesn't really make much sense, apparently they solve for s & t here, my question is was this figured out?)

GCD(190, 34) = 2 = 14 - 2(6)
=14 - 2[20 - 1(14)] --->6 = 20 - 1.14
= 3(14) -2(20)
= 3[34 - 1(20)] - 2(20) --->14 = 34 - 1.20
= 3(34 - 5(190 - 5.34) --->20 = 190 - 5.34
= 28(34) - 5(190).

s = -5 t = 28
zero2 is offline  
Old 02-08-2005, 04:23 PM   #2 (permalink)
Upright
 
http://www1.cs.columbia.edu/~tal/499...notes/ITC6.pdf

You are using the Extended Euclidean Algorithm. Refer to Example 1. It is a much simpler version of this problem. You use the equations computed in the Euclidean Algorithm to replace the value of the remainders until you are left with only the orginal values a & b.

Restating each of the equations above you get:
190 = 5(34) + 20 --> 20 = 190 - 5(34)
34 = 1(20) + 14 --> 14 = 34 - 1(20)
20 = 1(14) + 6 --> 6 = 20 - 1(14)
14 = 2(6) + 2 --> 2 = 14 - 2(6)

We use these to compute s & t as follows:
Start with the last one -> 2 = 14 - 2(6)
Use the next equation above it to replace 6 to get -> 2 = 14 - 2[20 - 1(14)]
Simplify -> 2 = 14 -2(20) + 2(14) --> 2 = 3(14) - 2(20)
Use the next equation above to replace 14 to get -> 2 = 3[34 - 1(20)] - 2(20)
Simplify -> 2 = 3(34) - 3(20) - 2(20) --> 2 = 3(34) - 5(20)
Now use the top equation to replace 20 to get -> 2 = 3(34) - 5[190 - 5(34)]
Simplify -> 2 = 3(34) - 5(190) + 25(34) --> 2 = 28(34) - 5(190)

since a = 190, s = -5
since b = 34, t = 28

Hope this helps
TimeTested is offline  
 

Tags
discrete, math


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On



All times are GMT -8. The time now is 10:26 AM.

Tilted Forum Project

Powered by vBulletin® Version 3.8.7
Copyright ©2000 - 2024, vBulletin Solutions, Inc.
Search Engine Optimization by vBSEO 3.6.0 PL2
© 2002-2012 Tilted Forum Project

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360