View Single Post
Old 09-18-2003, 04:09 PM   #11 (permalink)
thechao
Upright
 
Location: Houston
Okay. Here's my stab at it. Probably lots of holes, its been a while.

[D1] Imagine two sets T, S s.t. there is a mapping M : T -> S, 1-1, onto, but there is no mapping ~M : S -> T, 1-1, onto, we define this as |S| < |T|.

[1]
Consider |T| < |S|, consider the mapping M : S -> T, 1-1 and onto. Assume there is no 1-1, onto mapping ~M : T -> S. There exists some s of S, s.t. M(s) !of T, this is trivial. Call this the "one out" lemma.

[2]
Consider |T| < |S|, it is trivial to construct a mapping M : S -> T, 1-1 and onto. Simply take each element t of T and index it by a unique s: t[s] of T (this is NOT an ordering). The indexing function defines M(s) = t. N.B. M(s) has at least "one out" element by above lemma.

[3]
Consider |T|=|S|, then there is a mapping M : S -> T, 1-1 and onto and the inverse mapping ~M : S -> T is trivial to construct, e.g. M(s) = t, then ~M(t) = ~M(M(s)) = s, thus ~M(t) = s. Call this the "inversion lemma", nontrivial, see next. Corollary, if |T|=|S|, then there does not exist some element t of T s.t. there is no s of S s.t. M(s) != t and vice versa. Assume |T|=|S|, and M : T -> S, 1-1 and onto, but there is some s of S s.t. there is no t of T s.t. M(t) = s. This is a "one out" element. By definition this is a mapping, M : T -> S s.t. |T|<|S| ><.

[4]
Consider S,T s.t. |S| <= |T| and |S| != |T|, show that |S| < |T|. Since |T| >= |S| we can create a mapping M : T -> S, 1-1, onto. Assume there does not exist a "one out". Then that means for all t of T, M(t) = s, for some s of S, and if M is 1-1 and onto, then M(t1) = s1 and M(t2) = s2 and if t1!=t2, then s1!=s2. However, we can then construct some mapping ~M : S -> T, 1-1 and onto, then ~M(M(t)) = t for all t of T and M(~M(s)) = s for all s of S, then |S|=|T| ><, thus |S|<|T|.

[5]
Imagine two sets S, T s.t. |S| <= |T| and |T| <= |S| but |S| != |T|, then that means there is no mapping, M : S -> T, 1-1, onto. Thus there exists some t of T s.t. there is no s of S, M(s) = t. However, |T| < |S|, which means there is some mapping ~M(t) = s which could exist >< This means for each s of S there exists one, and only one t of T such that M(s) = t and consequently ~M(t) = s, QED.
thechao is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360