View Single Post
Old 06-03-2010, 05:56 AM   #27 (permalink)
Redlemon
Devoted
 
Redlemon's Avatar
 
Donor
Location: New England
Strange, once you understand the Monty Hall problem, try the Girl Named Florida problem.
Quote:
You know that a certain family has two children, and that at least one is a girl. But you can’t recall whether both are girls. What is the probability that the family has two girls — to the nearest percentage point?

Answer: Assume that there are an equal number of boys and girls, and that the gender of each child in the family is independent of the other’s (more on that below). Then there are four, equally likely possibilities for a two-child family’s history of procreation: Either a girl was born first, and then a boy; or a girl was born first, and then another girl; or boy then boy; or boy then girl. But you know that there is at least one girl in the family, so you can eliminate the (boy, boy) possibility. That leaves three scenarios, and only in one are there two girls. So the probability of two girls is one in three — 33%, to the nearest percentage point.

Comments: There’s an assumption I should have made explicit for this problem and the next problem: that there are an equal number of boys and girls (although in 2005, there were nearly 5% more boys than girls 14 and under, according to the Census Bureau). Kudos to Messrs. Newcombe and Plourde, and to Glenn Tippy and Gregg Skinner, for noting the importance of gender ratio at birth.

Results: 43% got this right. The range of answers was 25% to 80%, the median and mode were 50%, and the mean was 43.4%.
That wasn't so bad, right? Just wait...
Quote:
You know that a certain family has two children, and you remember that at least one is a girl with a very unusual name (that, say, one in a million females share), but you can’t recall whether both children are girls. What is the probability that the family has two girls — to the nearest percentage point?

Answer: Use the same logic as above, only this time there are three possibilities for each child: Boy, girl with the specific unusual name (let’s for the sake of argument make it Florida, the one used in Mr. Mlodinow’s book), and girl with a different name. Then there are five possibilities for a family with two children, one of them named Florida:
(boy, girl-F)
(girl-NF, girl-F)
(girl-F, boy)
(girl-F, girl-NF)
(girl-F, girl-F)
Unlike in question No. 2, these are not all equally likely. The last scenario is particularly unlikely, assuming the two children’s names are independent, because Florida is such an unusual name. So for the sake of this calculation, we can ignore it. The other four scenarios are, approximately, equally likely, because we’ve assumed that there are the same number of boys as girls, and nearly all girls have names other than Florida. In two of those four scenarios, the family has two girls. So the probability of two girls is about two in four — 50%, to the nearest percentage point. (There’s ample discussion of this question, and a more-detailed explanation from me, in the comments.)

Comments: It seems paradoxical that the girl’s name would make a difference, and in fact 75% of readers thought the answers to No. 2 and No. 3 were the same, including 68% of those who got No. 3 right. Mr. Mlodinow suggested I reward points for No. 3 only to those who also correctly answered No. 2. I disagreed, pointing out that his book is, after all, about the role of randomness in our lives. The final chapter makes a convincing case that much of what society defines as success is due to luck.

Results: 70% got this right. The range of answers was 15% to 100%, the median and mode were 50%, and the mean was 47.5%. Just 21% of readers got both this and No. 2 right.
I still can't wrap my head around this one.
__________________
I can't read your signature. Sorry.
Redlemon is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360