View Single Post
Old 05-31-2010, 12:26 PM   #3 (permalink)
Lasereth
Knight of the Old Republic
 
Lasereth's Avatar
 
Location: Winston-Salem, NC
This problem causes a lot of Internet arguments.

This poll is based on whether the reader assumes the problem is based on conditional statistics or unconditional statistics. If read in an unconditional manner (it appears that most read it this way), the answer IS 1/2 or that it doesn't matter if you switch or not. Conditional statistics problems are based upon a completely different set of mathematics and prove that the answer is that you should switch because of the 2/3 chance of winning.

So basically the answer is founded on which way you look at the problem. Saying that the answer is 2/3 for switching is true, but the answer is also "doesn't matter" or 1/2 if you consider it unconditional.

Wikipedia: "According to Morgan et al. (1991) "The distinction between the conditional and unconditional situations here seems to confound many." That is, they, and some others, interpret the usual wording of the problem statement as asking about the conditional probability of winning given which door is opened by the host, as opposed to the overall or unconditional probability. These are mathematically different questions and can have different answers depending on how the host chooses which door to open when the player's initial choice is the car (Morgan et al., 1991; Gillman 1992). For example, if the host opens Door 3 whenever possible then the probability of winning by switching for players initially choosing Door 1 is 2/3 overall, but only 1/2 if the host opens Door 3. In its usual form the problem statement does not specify this detail of the host's behavior, nor make clear whether a conditional or an unconditional answer is required, making the answer that switching wins the car with probability 2/3 equally vague. Many commonly presented solutions address the unconditional probability, ignoring which door was chosen by the player and which door opened by the host; Morgan et al. call these "false solutions" (1991). Others, such as Behrends (2008), conclude that "One must consider the matter with care to see that both analyses are correct.""
__________________
"A Darwinian attacks his theory, seeking to find flaws. An ID believer defends his theory, seeking to conceal flaws." -Roger Ebert
Lasereth is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360