View Single Post
Old 11-19-2009, 05:35 PM   #67 (permalink)
Baraka_Guru
warrior bodhisattva
 
Baraka_Guru's Avatar
 
Super Moderator
Location: East-central Canada
Science at work.

Quote:
Dating Sedimentary Rock

The most widely known form of radiometric dating is carbon-14 dating. This is what archaeologists use to determine the age of human-made artifacts. But carbon-14 dating won't work on dinosaur bones. The half-life of carbon-14 is only 5,370 years, so carbon-14 dating is only effective on samples that are less than 50,000 years old. Dinosaur bones, on the other hand, are millions of years old -- some fossils are billions of years old. To determine the ages of these specimens, scientists need an isotope with a very long half-life. Some of the isotopes used for this purpose are uranium-238, uranium-235 and potassium-40, each of which has a half-life of more than a million years.

Unfortunately, these elements don't exist in dinosaur fossils themselves. Each of them typically exists in igneous rock, or rock made from cooled magma. Fossils, however, form in sedimentary rock -- sediment quickly covers a dinosaur's body, and the sediment and the bones gradually turn into rock. But this sediment doesn't typically include the necessary isotopes in measurable amounts. Fossils can't form in the igneous rock that usually does contain the isotopes. The extreme temperatures of the magma would just destroy the bones.

So to determine the age of sedimentary rock layers, researchers first have to find neighboring layers of Earth that include igneous rock, such as volcanic ash. These layers are like bookends -- they give a beginning and an end to the period of time when the sedimentary rock formed. By using radiometric dating to determine the age of igneous brackets, researchers can accurately determine the age of the sedimentary layers between them.

Using the basic ideas of bracketing and radiometric dating, researchers have determined the age of rock layers all over the world. This information has also helped determine the age of the Earth itself. While the oldest known rocks on Earth are about 3.5 billion years old, researchers have found zircon crystals that are 4.3 billion years old [source: USGS]. Based on the analysis of these samples, scientists estimate that the Earth itself is about 4.5 billion years old. In addition, the oldest known moon rocks are 4.5 billion years old. Since the moon and the Earth probably formed at the same time, this supports the current idea of the Earth's age.
HowStuffWorks "How do scientists determine the age of dinosaur bones?"
__________________
Knowing that death is certain and that the time of death is uncertain, what's the most important thing?
—Bhikkhuni Pema Chödrön

Humankind cannot bear very much reality.
—From "Burnt Norton," Four Quartets (1936), T. S. Eliot
Baraka_Guru is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360