View Single Post
Old 05-21-2009, 06:15 AM   #1 (permalink)
Glory's Sun
Registered User
 
300 DVD's on One Disk

BBC NEWS | Science & Environment | How to fit 300 DVDs on one disc

Quote:
A new optical recording method could pave the way for data discs with 300 times the storage capacity of standard DVDs, Nature journal reports.

The researchers say this could see a whopping 1.6 terabytes of information fit on a DVD-sized disc.

They describe their method as "five-dimensional" optical recording and say it could be commercialised.

The technique employs nanometre-scale particles of gold as a recording medium.

Researchers at Swinburne University of Technology in Australia have exploited the particular properties of these gold "nano-rods" by manipulating the light pointed at them.

The team members described what they did as adding three "dimensions" to the two spatial dimensions that DVD and CD discs already have.

They say they were able to introduce a spectral - or colour - dimension and a polarisation dimension, as well as recording information in 10 layers of the nano-rod films, adding a third spatial dimension.

The scientists used the nanoparticles to record information in a range of different colour wavelengths on the same physical disc location. This is a major improvement over traditional DVDs, which are recorded in a single colour wavelength with a laser.

Also, the amount of incoming laser light absorbed by the nanoparticles depends on its polarisation. This allowed the researchers to record different layers of information at different angles.

The researchers thus refer to the approach as 5-D recording. Previous research has demonstrated recording techniques based on colour or polarisation, but this is the first work that shows the integration of both.

As a result, the scientists say they have achieved unprecedented data density.

Their approach used 10-layer stacks composed of thin glass plates as the recording medium. If scaled up to a DVD-sized disk, the team would be able to record 1.6 terabytes - that is, 1,600 gigabytes - or over 300 times the quantity stored on a standard DVD.

Significant improvements could be made by thinning the spacer layers and using more than two polarisation angles - pushing the limits to 10 terabytes per disc and beyond, the researchers say.

Bit by bit

Recent efforts based on holography have shown that up to 500 Gb could potentially be stored on standard DVD-sized disks.

Holographic methods take all of the information to be recorded and encode it in the form of a graph showing how often certain frequencies arise in it.

That means that the recording process is a complex, all-at-once, all-or-nothing approach that would be difficult to implement on an industrial scale.

By contrast, 5-D recording is "bit-by-bit", like current CD and DVD writing processes in that each piece of information is read sequentially.

That is likely to mean that recording and read speeds would be comparatively slow, but the approach would be easier to integrate with existing technology.

"The optical system to record and read 5-D is very similar to the current DVD system," says James Chon, a co-author on the research.

"Therefore, industrial scale production of the compact system is possible."
DVD surface
DVD surfaces now are "2-D": just the position on the disc matters

Now that the method has been demonstrated in custom-made multi-layer stacks, the team is working in conjunction with Samsung to develop a drive that can record and read onto a DVD-sized disc.

Dr Chon says that the material cost of a disc would be less than $0.05 (£0.03), but there are a number of advantages in moving to silver nano-rods that would bring that cost down by a factor of 100.

For optical data storage expert Tom Milster, at the University of Arizona, the beauty of the approach is in its simplicity.

"It's not just elegant - there are a lot of experiments that are elegant - it's relatively straightforward," he told BBC News.

For the moment, Dr Milster says, the equipment needed to write the data would make a commercial system expensive. However, that has not stopped the development of optical storage solutions in the past.

"For example, a Blu-ray player is not an easy system to realise; they've got some wonderful optics in there," Dr Milster said. "People thought that would be pretty difficult to do, but others managed to do it."
5-d DVD.jpg


damn. This would be awesome in places where I work, we could not only put all tape and media on media servers but transfer tons of tape to one disk. I can also imagine this would help in other areas of media such as gaming and higher quality images from video once the other components catch up. Imagine being able to put native 4k footage on a disk.. that would be awesome.
Glory's Sun is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360