View Single Post
Old 04-22-2008, 08:38 AM   #80 (permalink)
Yakk
Wehret Den Anfängen!
 
Location: Ontario, Canada
X$ per year, at Y% real interest, both growing at inflation as well...

Define K = 100%+Y%

X * (K^0 + K^1 + K^2 + ... + K^n)
if you do this for K years, =
X * [K^(n+1) - 1] / (K-1)

Say 3% real return, 10,000$ per year, 30 years:
10,000 * [1.5] / [.03] = 1/2 a million dollars in today's money.

Increase K to 1.04%: 600,000$ in today's money.
K to 1.05%: 700,000$ in today's money.
K to 1.06%: 850,000$ in today's money.

Every 1,000$ put in today -> 2500$/3300$/4500$/6000$ in 31 years. (3%/4%/5%/6% real return)

Increase savings from 10,000$ to 20,000$ per year: double the result.

Boost savings period to 40 years: (10000$ per year)
780,000$ @ 3%
1,000,000$ @ 4%
1,250,000$ @ 5%
1,650,000$ @ 6%

At 1,000,000$ (todays dollars -- in 30 years @ 3% inflation, that's 2.5 million then)... At 3% return with a 40 year "run to zero" target, you can manage 42,000$ per year (inflation adjusted). (roughly the same equations)

So aiming for 1 million dollars in liquid savings for a 40 year retirement-before-death doesn't leave you destitute.

Half half a million? ~21,000$ per year over 40 years.
1/4 a million? ~10,500$ per year over 40 years.

Want to hit that 1 million dollar savings target?

Let's be cautious and assume 4% real return (after inflation).

Aiming for a 1 million dollar nest egg:
Over 40 years: 10,000$ per year, -1000$/year every ~20k in savings you have invested
Over 30 years: 16,500$ per year, -1100$/year every ~20k in savings you have invested.
Over 20 years: 31,000$ per year, -1400$/year every ~20k in savings you have invested.
Over 10 years: 74,000$ per year, -2300$/year every ~20k in savings you have invested.

Note that there is the additional, hard problem of managing a consistent return of 4% over inflation when you need it.

As an example, investing all of your money in one country is a bad idea, both due to local economic problems and currency effects.

A simple version of some of the above math:
Let C(x,y) be the compound equation:
(x^(y+1) - 1) / (x-1)

Then we have:
R * C(1.04, 30) * 1.03^40 = I * C(1.03,40)
for a 30 year savings period @ 4% and a 40 year retirement period.

R * 193.5 = I * 78.66
R * 2.46 = I

If you already have savings "S", it becomes:
[R * C(1.04, 30) + S*1.04^30] * 1.03^40 = I * C(1.03,40)

You can change the real returns pre and post-retirement, the periods of each, etc with relative ease.
__________________
Last edited by JHVH : 10-29-4004 BC at 09:00 PM. Reason: Time for a rest.

Last edited by Yakk; 04-22-2008 at 09:04 AM..
Yakk is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360