View Single Post
Old 06-07-2007, 07:28 PM   #13 (permalink)
Hain
has a plan
 
Hain's Avatar
 
Location: middle of Whywouldanyonebethere
An Unpleasant Solution

I don't like this solution. The problem is reminiscent of the Poisson Distribution. In short, this determines the probability that k counts (called "arrivals") occurring if you expect λ counts occurring. The Poisson Distribution's form is:
As shows it can be manipulated to looks like terms of this limit.

Some properties of the Poisson distribution is that it is asymptotic to zero as you reach infinity, which makes sense since the odds that you will have infinitely many things occurring when you expect a finite number is zero. The Poisson distribution has a peak probability at λ, shown here [click image to enlarge]:

I've shown before that this problem's solution lies between 0 and 1, which is confirmed as probability is used. The proper way to compute the probability of a range of occurrences, is to add the individual probabilities together. For instance, if you average 10 people arriving per day in a travel office, and you want to know the probability of 9, 10, or 11 people arriving, then you:
Looking at this, if we find the probability of all possible occurrences, from none to infinitely many occurrences, then the probability will be 1.

My limit goes from zero to n occurrences, with the expected value being n. Since we are going from 0 to n, the point of the peak, we are only analyzing the left range of the total values. Since n is going to infinity, and the end is already at infinity, we are analyzing only the left half of all expected values. If we are only analyzing half the values, then the probability is 1/2.
Hain is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360