Proof is simple: it's evidence to establish the true nature of something. For example, we can prove that 1 + 1 = 2. I can take two single groupings of an item and combine them in order to create a grouping of two, as proof. I can offer mathematical proof, as well:
Quote:
The proof starts from the Peano Postulates, which define the natural
numbers N. N is the smallest set satisfying these postulates:
P1. 1 is in N.
P2. If x is in N, then its "successor" x' is in N.
P3. There is no x such that x' = 1.
P4. If x isn't 1, then there is a y in N such that y' = x.
P5. If S is a subset of N, 1 is in S, and the implication
(x in S => x' in S) holds, then S = N.
Then you have to define addition recursively:
Def: Let a and b be in N. If b = 1, then define a + b = a'
(using P1 and P2). If b isn't 1, then let c' = b, with c in N
(using P4), and define a + b = (a + c)'.
Then you have to define 2:
Def: 2 = 1'
2 is in N by P1, P2, and the definition of 2.
Theorem: 1 + 1 = 2
Proof: Use the first part of the definition of + with a = b = 1.
Then 1 + 1 = 1' = 2 Q.E.D.
Note: There is an alternate formulation of the Peano Postulates which
replaces 1 with 0 in P1, P3, P4, and P5. Then you have to change the
definition of addition to this:
Def: Let a and b be in N. If b = 0, then define a + b = a.
If b isn't 0, then let c' = b, with c in N, and define
a + b = (a + c)'.
You also have to define 1 = 0', and 2 = 1'. Then the proof of the
Theorem above is a little different:
Proof: Use the second part of the definition of + first:
1 + 1 = (1 + 0)'
Now use the first part of the definition of + on the sum in
parentheses: 1 + 1 = (1)' = 1' = 2 Q.E.D.
|
The basic idea is to establish what we know, and then allow our knowledge to grow from that point. What we know can only be established through precedence of perception, be that visual, auditory, tough, smell, or taste. We can locate and test patterns in nature in order to establish it's nature.