This is what I was talking about in my post above:
Quote:
When we say that the lightning strokes A and B are simultaneous with respect to be embankment, we mean: the rays of light emitted at the places A and B, where the lightning occurs, meet each other at the mid-point M of the length A B of the embankment. But the events A and B also correspond to positions A and B on the train. Let M1 be the mid-point of the distance A B on the travelling train. Just when the flashes (as judged from the embankment) of lightning occur, this point M1 naturally coincides with the point M but it moves towards the right in the diagram with the velocity v of the train. If an observer sitting in the position M1 in the train did not possess this velocity, then he would remain permanently at M, and the light rays emitted by the flashes of lightning A and B would reach him simultaneously, i.e. they would meet just where he is situated. Now in reality (considered with reference to the railway embankment) he is hastening towards the beam of light coming from B, whilst he is riding on ahead of the beam of light coming from A. Hence the observer will see the beam of light emitted from B earlier than he will see that emitted from A. Observers who take the railway train as their reference-body must therefore come to the conclusion that the lightning flash B took place earlier than the lightning flash A. We thus arrive at the important result:
Events which are simultaneous with reference to the embankment are not simultaneous with respect to the train, and vice versa (relativity of simultaneity). Every reference-body (co-ordinate system) has its own particular time ; unless we are told the reference-body to which the statement of time refers, there is no meaning in a statement of the time of an event.
|
Was I right when I said that the two beams of light will still seem simultaneous to point M' even if it is moving towards one of them?