View Single Post
Old 01-28-2005, 10:12 AM   #17 (permalink)
pig
pigglet pigglet
 
pig's Avatar
 
Location: Locash
Quote:
Originally Posted by C4 Diesel
It would be an issue of thermal mass, not temperature gradient. Assuming the bottle is a tall cylinder, even if they were both closed, the temperature gradients would be very similar. This is because the smaller dimension is the radius, not the height, and since decreasing the amount of water in the bottle does not affect the radius and only affects the height (assuming it was standing relatively upright), the direction containing the more drastic temperature gradient would not change. The bottle would only cool faster because there is actually less to cool.
C4 - lacking sufficient information about the position of the bottles, etc - I honestly can not make a better statment about this portion, save what I'll say below.

Quote:
The temperature gradients would look something like this... Imagine taking a rainbow and shaping it into a two-dimentional rectangle (with the longer dimension being height, such that it somewhat resembles a vertical bottle) with rounded corners. The colors would represent the temperature profile. The full bottle would be that rainbow, the other would be one that was 1/4 shorter.
I believe I understand your analogy, and thus I have this question: if you have a rectangular rainbow that is x units long, and another rectangular rainbow which is x/4 units long, with the same "non-dimensionalized" spectrum across them, I do not understand how this would not affect the color gradient, as I would think it would have to be "compressed" on the shorter rectangular rainbow. Would that compression not essentially represent a more severe temperature gradient, in the longitudinal direction? I wholeheartedly agree with your radial statements.

While I appreciate the thermal conductivity of plastic, I am guessing that the air in a plastic bottle with a thickness of ~ 1/16 " or less will reach thermal equilibrium with the air on the outside of the bottle if left overnight. I have never conducted the experiment, nor have I performed the calculations, thus I can not state as fact. I do think that a zero-flux gradient at the center of your radial coordinate system and a low-temperature temperature condition on the edge of the circle is less severe than two low-temperature conditions on the end of the longitudinal axis. Of course, there will result a zero-flux condition in the middle of the cylinder as well; either way I agree that the volume (which I believe is related to the thermal mass?) differences will directly affect the rate of cooling and phase change.
__________________
You don't love me, you just love my piggy style

Last edited by pig; 01-28-2005 at 10:15 AM..
pig is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360