shakran, we only count two antelope because we see those two objects as antelopes. Using our senses and the schemas in our brains we identify those two objects as having some characteristics that are the same in a very general way. But why do we have to think of things in such a general way? Certainly if you were to examine the objects closely enough you might be able to discern some differences. You might name them individually as Mr. T. and T.J. Hooker. Then, although they belong to our idea of what is an antelope, they are also very different things in that they are Mr. T and T.J. Hooker. If another person were to come along, he or she would recognize two antelopes, but you would see distinct objects, Mr. T and T.J. Hooker.
Which is right?
Are either of you more "correct" than the other?
Isn't it possible then that perhaps some alien civilization with more powerful sensory organs than us, or more developed schemas might see things in individual terms, rather than as parts of groups?
And Stompy, yes mathematics works very well to describe things that exist in mathematics, like spheres. But do such ideas really exist in reality? Outside of our minds do spheres really exist? Euclidean geometry works very well for simple objects that we interact with most of the time, but it falls apart on cosmic or atomic scales. If another civilization were to see things on a different scale they might come to very different conclusions than us.
It's a matter of perspective and understanding. Mathematics is useful to us as a method of describing the things we perceive around us. It doesn't actually tell us much about those things.
__________________
-------------
You know something, I don't think the sun even... exists... in this place. 'Cause I've been up for hours, and hours, and hours, and the night never ends here.
|