View Single Post
Old 04-22-2004, 07:28 AM   #9 (permalink)
Yakk
Wehret Den Anfängen!
 
Location: Ontario, Canada
How is it Useful?

So, what does all this mean, and how is it useful?

TimeToPayOffDebt =
ln(desired_surplus)-ln(current_surplus)
--------------------------------------------------
interest_rate


where
surplus = payment_rate - debt*interest_rate


payment =
(r*D*(1+r)^m)
-------------
((1+r)^m)-1


payment is "payment per period of time"
r is "interest rate per period of time"
m is "number of payments"
D is "starting debt"
^ means "to the power of". So, (1+r)^m means "(1+r) to the power m".

In general, this is how you should use the above.

The first rule is, interest isn't a percentage: If you have 12% interest, your interest is 0.12. If you have 20% interest, your interest is 0.20.

Next, figure out your monthly interest rate. There are two ways you can do this.

Accurate way:
MonthlyInterest = (1+Annual_Interest)^(1/12)-1

Easy way:
MonthlyInterest = Annual_Interest / 12

The above is easy to calculate if you turn the windows calculator into "scientific" mode. =)

Example: 9% annual interest.
Monthly_Interest = (1+0.09)^(1/12) - 1
= 1.09^(1/12) - 1
= 1.007207 - 1
= 0.007207

Work out your monthly interest payments.
Monthly_Interest_Payments = Monthly_Interest * Debt

Suppose your debt was 9000$. Then
Monthly_Interest_Payments = 0.007207 * 9000
Monthly_Interest_Payments = 64.87

The next thing you do is decide how much you can afford to pay off your debt. Lets say 200$ / month.

Now, what is your monthly surplus? Take the amount you are paying off and subtract your Monthly_Interest_Payments.

Initial_Monthly_Surplus = 200 - 64.87
Initial_Monthly_Surplus = 135.13$

Eventually, you want to be paying no interest. At this point, your Interest_Payments will be 0.

End_Monthly_Surplus = 200 - 0
End_Monthly_Surplus = 200

Now, pull out the 'how long to pay off debt' equation:
TimeToPayOffDebt =
ln(desired_surplus)-ln(current_surplus)
--------------------------------------------------
interest_rate


"ln" is a function on most calculators. It is also known as "the natural logarithm".

Plug in the numbers
TimeToPayOffDebt =
ln ( End_Monthly_Surplus ) - ln (Initial_Monthly_Surplus)
---------------------------------------------------------
Monthly_Interest_Rate

(notice everything is monthly, if they are inconsistent things break)

TimeToPayOffDebt =
ln( 200 ) - ln( 135.13 )
------------------------
0.007207
=
0.39208
------------------------
0.007207
=
54.4

So, this says it will take about 54.4 months to pay off the debt at this rate.

After you have an answer, use the 2nd equation to verify it. This is important: not only did you do alot of math, the first equation isn't prerfectly accurate for the real world either. Round the number of months up.

payment =
r*D*(1+r)^m
-------------
((1+r)^m)-1

=
Monthly_Interest* Debt * (1+Monthly_Interest)^NumberOfMonths
------------------------------------------------------------
((1+Monthly_Interest)^NumberOfMonths) - 1
=
0.007207 * 9000 * (1+0.007207)^55
---------------------------------
((1+0.007207)^55) - 1
=
64.863 * 1.4843
---------------
1.4843 - 1
=
96.276
---------------
0.4843
=
198.80

which is really close to 200$, close enough that we can be confident we didn't make a serious mistake. =)
__________________
Last edited by JHVH : 10-29-4004 BC at 09:00 PM. Reason: Time for a rest.

Last edited by Yakk; 04-22-2004 at 12:13 PM..
Yakk is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360