View Single Post
Old 04-08-2004, 07:59 AM   #4 (permalink)
Yakk
Wehret Den Anfängen!
 
Location: Ontario, Canada
As a general guild, the proof of a theorem often gives hints asto how it can be used. Try reading through the proof of the IVT in order to find an answer.

A solution using your version of the IVT would be something like:
Let f(x) = x + sin(x)
We are required to prove 1 is an element of f([0, π/6]). (f[0,π/6]) is the image under f of [0, π/6] See Footnote1 for a more fomal treatment of "image under").
Let A := f([0, π/6])

Let m be the minimium value of A. Let M be the maximium value of A. (note A = [m,M], by IVT(2) and IVT(3).)

Now, f(π/6) = 1.5. Thus, M >= 1.5.
f(0) = 0. This, m <= 0.

From this we know [0, 1.5] is a subset of [m, M].

Now, A = [m,M] (by the intermediate value theorem, part 2). 1 is an element of [0,1.5], which is a subset of A, which is f([0,π/6]). By the definition of f([0,π/6]), there exists an x in [0, π/6] such that f(x) = 1.

As an aside, we never discovered what m and M are: we only found an inequality restricting their values. We don't need to know what their value is in order to find them useful.

Footnotes:
1: If g is a function and B is a set, then "the image under g of B" is defined to be all the values {g(x) such that x is an element of B}. This is denoted g(B).

In other words, y is in g(B) if and only if there exists an x in B such that g(x) = y.

A property of images under functions is Monotonicity: if B is a subset of C, then g(B) is a subset of g(C). (not nessicarially a strict subset, but a subset). Ie, if y is an element of g(B), y is an element of g(C).
__________________
Last edited by JHVH : 10-29-4004 BC at 09:00 PM. Reason: Time for a rest.
Yakk is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360