View Single Post
Old 02-02-2005, 03:23 AM   #1 (permalink)
tecoyah
Illusionary
 
tecoyah's Avatar
 
Gotta Love Science

This could be an amazing breakthrough, truly beneficial to all.
I am quite impressed, and hope the research continues to expand.

Printable Skin: 'Inkjet' Breakthrough Makes Human Tissue
By Bjorn Carey
LiveScience Staff Writer
posted: 01 February, 2005
7:00 a.m. ET


By manufacturing human skin cells using a printer similar to an inkjet, scientists have taken a significant first step toward generating new skin. The process, which could revolutionize the treatment of major skin wounds, could be ready for clinical trials in five years.

While much research needs to be done, the technique is promising, according to an expert not involved in the breakthrough.

Scientists expect to eventually build commercial skin printers for hospital use. Doctors would take cells from a patient’s body, multiply them, and suspend them in a nutrient-rich liquid similar to ink. A technician would enter measurements of a patient’s wound into a computer and feed the suspended cells into the printer.

The cells would then be seeded on a plastic tissue scaffold, which provides shape and stability to the new piece of skin as it develops. The scaffold would also anchor the perfectly shaped piece of skin over the wound, once applied, keeping the graft in place until it takes hold.

The scaffold would dissolve naturally over time, just as some stitches do.

"The cells are the patient’s own cells and the object is to reincorporate them into the body," project leader Brian Derby told LiveScience.

Perhaps bones and organs, too

Derby heads the Ink-Jet Printing of Human Cells Project at the University of Manchester in the United Kingdom. He said that using a person's own cells is ideal because it will reduce scarring, and patients will not need to take immunosuppressant drugs, as they do with some current skin transplant procedures.

Derby’s team is using starter cells taken from patients having hip implants at the Manchester Royal Infirmary, but the ideal situation would be to take stem cells from a patient’s bone marrow and control how they morph, a natural process called differentiation. Stem cells can become any type of body tissue when properly directed.

The technology would allow printing more than one type of cell at a time and, overcoming a current limitation, allow control over the shape of whatever is grown. The shape of the scaffold determines the shape of the end product.

"It would be possible to build up a structure using different cell types mimicking the structure of actual skin," Derby said. "You can print as many cells as you have print heads. Our machine could print up to eight different ‘inks’ where the inks are cell suspensions, scaffold materials or biochemicals."

Such a printer could possibly generate bone for bone grafts, or even whole organs, although these goals are farther down the research road.

"In theory, you could print the scaffolding to create an organ in a day, but we are not quite there yet," Derby said.

'Significant achievement'

Ioannis Yannas, a professor at Massachusetts Institute of Technology, is the co-developer of the Dermis Regeneration Template (DRT), the first "artificial skin" scaffold developed. It was given federal approval in 1991 for use in plastic surgery and in 1996 to treat burns. DRT has been used with more than 13,000 burn victims.

Derby’s research is a "significant achievement," Yannas said in an email interview. "Dr. Derby’s process promises to greatly simplify cell-seeding of scaffolds that are used to induce organ regeneration."

It's not yet clear, however, whether the technology will go beyond production of skin.

"It remains to be seen whether the process can be used to seed scaffolds that have been shown capable of inducing regeneration leading to restoration of organ shape and physiological function," Yannas said.

Yannas' DRT process involves a mesh consisting mostly of collagen fibers that is placed on a wound to provide a structure for new dermis (sub-layer of skin) and its structures to grow on. Once that is complete, a very thin layer of epidermis (top-layer of skin) is harvested from the patient’s body and is placed over the new dermis. The DRT prevents contraction and scar formation, and helps the body grow new, pliable skin, typically in 30 days.

Teams in the United States and Japan are also working on systems similar to the new inkjet technology, but Derby’s team is the first to produce cells without destroying them during the printing process. The scaffolds are very small -- on the scale of millimeters, but Derby expects to create 3D scaffolds on the scale of centimeters by November. A centimeter is 0.4 inches.

Derby hopes to move to clinical trials soon. "There is a fighting chance something could come of this in five years," he said.

http://www.livescience.com/technolog..._printing.html
__________________
Holding onto anger is like grasping a hot coal with the intent of throwing it at someone else; you are the one who gets burned. - Buddha
tecoyah is offline  
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360